Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Choosing an optimal radioimmunotherapy dose for clinical response

Identifieur interne : 00F780 ( Main/Repository ); précédent : 00F779; suivant : 00F781

Choosing an optimal radioimmunotherapy dose for clinical response

Auteurs : RBID : Pascal:02-0260306

Descripteurs français

English descriptors

Abstract

Clinical trials have documented the single-agent efficacy of radioimmunotherapy (RIT) in lymphoma, and several combination therapy studies are now in progress. RIT agents are currently becoming generally available for clinical use in lymphoma therapy. Solid tumors, which are notoriously less responsive to any single agent, have demonstrated clinically useful responses, albeit temporary, and multimodality studies have been instituted. However, a sincere debate continues regarding the basic parameters to be used to define appropriate therapeutic dosing when using this modality in clinical cancer care. It is a good time to reevaluate relevant dose response information from preclinical and clinical RIT. Preclinical studies have demonstrated abundant evidence of dose response in tumor and normal tissue in homogenous model systems; however, substantive variation occurs between the dose responses of tumors with low and variable (or shed) antigen expression, as well as between histologically different tumor models. Clinical studies of various heavily pretreated patient populations given several very different BIT pharmaceuticals have led to disparate conclusions regarding patient dosing methods and dosimetric predictions of toxicity and efficacy. Single-study data on previously untreated lymphoma patients with similar histology has demonstrated a correlation of imaging dosimetry with toxicity and tumor response. High-dose therapy with bone marrow support has also demonstrated a high tumor response rate and nonmarrow normal organ toxicities that correlate with the calculated dose to those organs from imaging. In iodine-131 (131I)-anti-CD20 studies, 131I was demonstrated to have variable excretion, and estimated total-body radiation dose from tracer study proved a predictive surrogate for marrow toxicity. Yttrium-90 (90Y)-anti-CD20, which has little 90Y excretion from the body, demonstrated the injected dose per body weight to be more predictive of marrow toxicity than indium-111 (111In) tracer dosimetry methods in heavily pretreated patients, and showed maximal safety with standard mCi/kg therapy dosing. Variations in clinical RIT choices, dosing methods, and dosimetry methods emphasize the need to review the relevant information to date. Future clinical trial designs, the sophistication of dosimetry, treatment planning, and clinical treatment decisions should all be focused on achieving the best benefit-risk relationship for each patient.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0260306

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Choosing an optimal radioimmunotherapy dose for clinical response</title>
<author>
<name sortKey="Denardo, Sally J" uniqKey="Denardo S">Sally J. Denardo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Internal Medicine, Division of Hematology and Oncology, Section of Radiodiagnosis and Therapy, University of California, Davis Medical Center</s1>
<s2>Sacramento, California</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Sacramento, California</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Williams, Lawrence E" uniqKey="Williams L">Lawrence E. Williams</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Radiology Division, City of Hope National Medical Center</s1>
<s2>Duarte, California</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Duarte, California</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leigh, Bryan R" uniqKey="Leigh B">Bryan R. Leigh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>IDEC Pharmaceuticals</s1>
<s2>San Diego, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Idaho</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wahl, Richard L" uniqKey="Wahl R">Richard L. Wahl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Division of Nuclear Medicine, John Hopkins Outpatient Center</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Baltimore, Maryland</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0260306</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0260306 INIST</idno>
<idno type="RBID">Pascal:02-0260306</idno>
<idno type="wicri:Area/Main/Corpus">00F388</idno>
<idno type="wicri:Area/Main/Repository">00F780</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0008-543X</idno>
<title level="j" type="abbreviated">Cancer</title>
<title level="j" type="main">Cancer</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dose activity relation</term>
<term>Dosimetry</term>
<term>Human</term>
<term>Immunoradiotherapy</term>
<term>Non Hodgkin lymphoma</term>
<term>Treatment</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Lymphome non hodgkinien</term>
<term>Immunoradiothérapie</term>
<term>Traitement</term>
<term>Relation dose réponse</term>
<term>Dosimétrie</term>
<term>Homme</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Clinical trials have documented the single-agent efficacy of radioimmunotherapy (RIT) in lymphoma, and several combination therapy studies are now in progress. RIT agents are currently becoming generally available for clinical use in lymphoma therapy. Solid tumors, which are notoriously less responsive to any single agent, have demonstrated clinically useful responses, albeit temporary, and multimodality studies have been instituted. However, a sincere debate continues regarding the basic parameters to be used to define appropriate therapeutic dosing when using this modality in clinical cancer care. It is a good time to reevaluate relevant dose response information from preclinical and clinical RIT. Preclinical studies have demonstrated abundant evidence of dose response in tumor and normal tissue in homogenous model systems; however, substantive variation occurs between the dose responses of tumors with low and variable (or shed) antigen expression, as well as between histologically different tumor models. Clinical studies of various heavily pretreated patient populations given several very different BIT pharmaceuticals have led to disparate conclusions regarding patient dosing methods and dosimetric predictions of toxicity and efficacy. Single-study data on previously untreated lymphoma patients with similar histology has demonstrated a correlation of imaging dosimetry with toxicity and tumor response. High-dose therapy with bone marrow support has also demonstrated a high tumor response rate and nonmarrow normal organ toxicities that correlate with the calculated dose to those organs from imaging. In iodine-131 (
<sup>131</sup>
I)-anti-CD20 studies,
<sup>131</sup>
I was demonstrated to have variable excretion, and estimated total-body radiation dose from tracer study proved a predictive surrogate for marrow toxicity. Yttrium-90 (
<sup>90</sup>
Y)-anti-CD20, which has little
<sup>90</sup>
Y excretion from the body, demonstrated the injected dose per body weight to be more predictive of marrow toxicity than indium-111 (
<sup>111</sup>
In) tracer dosimetry methods in heavily pretreated patients, and showed maximal safety with standard mCi/kg therapy dosing. Variations in clinical RIT choices, dosing methods, and dosimetry methods emphasize the need to review the relevant information to date. Future clinical trial designs, the sophistication of dosimetry, treatment planning, and clinical treatment decisions should all be focused on achieving the best benefit-risk relationship for each patient.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0008-543X</s0>
</fA01>
<fA02 i1="01">
<s0>CANCAR</s0>
</fA02>
<fA03 i2="1">
<s0>Cancer</s0>
</fA03>
<fA05>
<s2>94</s2>
</fA05>
<fA06>
<s2>4</s2>
<s3>SUP</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Choosing an optimal radioimmunotherapy dose for clinical response</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Eighth Conference on Radioimmunodetection and Radioimmunotherapy of Cancer, Princeton, New Jersey, October 12-14, 2000</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DENARDO (Sally J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WILLIAMS (Lawrence E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEIGH (Bryan R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WAHL (Richard L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Internal Medicine, Division of Hematology and Oncology, Section of Radiodiagnosis and Therapy, University of California, Davis Medical Center</s1>
<s2>Sacramento, California</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Radiology Division, City of Hope National Medical Center</s1>
<s2>Duarte, California</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>IDEC Pharmaceuticals</s1>
<s2>San Diego, California</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Division of Nuclear Medicine, John Hopkins Outpatient Center</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1275-1286</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2701</s2>
<s5>354000100191080130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>65 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0260306</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Cancer</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Clinical trials have documented the single-agent efficacy of radioimmunotherapy (RIT) in lymphoma, and several combination therapy studies are now in progress. RIT agents are currently becoming generally available for clinical use in lymphoma therapy. Solid tumors, which are notoriously less responsive to any single agent, have demonstrated clinically useful responses, albeit temporary, and multimodality studies have been instituted. However, a sincere debate continues regarding the basic parameters to be used to define appropriate therapeutic dosing when using this modality in clinical cancer care. It is a good time to reevaluate relevant dose response information from preclinical and clinical RIT. Preclinical studies have demonstrated abundant evidence of dose response in tumor and normal tissue in homogenous model systems; however, substantive variation occurs between the dose responses of tumors with low and variable (or shed) antigen expression, as well as between histologically different tumor models. Clinical studies of various heavily pretreated patient populations given several very different BIT pharmaceuticals have led to disparate conclusions regarding patient dosing methods and dosimetric predictions of toxicity and efficacy. Single-study data on previously untreated lymphoma patients with similar histology has demonstrated a correlation of imaging dosimetry with toxicity and tumor response. High-dose therapy with bone marrow support has also demonstrated a high tumor response rate and nonmarrow normal organ toxicities that correlate with the calculated dose to those organs from imaging. In iodine-131 (
<sup>131</sup>
I)-anti-CD20 studies,
<sup>131</sup>
I was demonstrated to have variable excretion, and estimated total-body radiation dose from tracer study proved a predictive surrogate for marrow toxicity. Yttrium-90 (
<sup>90</sup>
Y)-anti-CD20, which has little
<sup>90</sup>
Y excretion from the body, demonstrated the injected dose per body weight to be more predictive of marrow toxicity than indium-111 (
<sup>111</sup>
In) tracer dosimetry methods in heavily pretreated patients, and showed maximal safety with standard mCi/kg therapy dosing. Variations in clinical RIT choices, dosing methods, and dosimetry methods emphasize the need to review the relevant information to date. Future clinical trial designs, the sophistication of dosimetry, treatment planning, and clinical treatment decisions should all be focused on achieving the best benefit-risk relationship for each patient.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B26J</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Lymphome non hodgkinien</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Non Hodgkin lymphoma</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Linfoma no Hodgkin</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Immunoradiothérapie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Immunoradiotherapy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Inmunoradioterapia</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Traitement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Treatment</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Tratamiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Relation dose réponse</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Dose activity relation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Relación dosis respuesta</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dosimétrie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Dosimetry</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Dosimetría</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Homme</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Human</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>08</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Hémopathie maligne</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Malignant hemopathy</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Hemopatía maligna</s0>
<s5>37</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Lymphoprolifératif syndrome</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Lymphoproliferative syndrome</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Linfoproliferativo síndrome</s0>
<s5>38</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Radiothérapie</s0>
<s5>45</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Radiotherapy</s0>
<s5>45</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Radioterapia</s0>
<s5>45</s5>
</fC07>
<fN21>
<s1>154</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Conference on Radioimmunodetection and Radioimmunotherapy of Cancer</s1>
<s2>8</s2>
<s3>Princeton, New Jersey USA</s3>
<s4>2000-10-12</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00F780 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00F780 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0260306
   |texte=   Choosing an optimal radioimmunotherapy dose for clinical response
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024